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ABSTRACT

s 8.

The problem of estimating the number of components, and the other parameters, ina

9

finite mixture of probability densities is formulated as a continuous mixture estimation =, -2
>

problem. Representing the finite mixtureas h = J'f(.,8)d6( 8), where 6 changes only on =

a finite number of points, it is shown that under fairly general conditions it is possible to

represent this mixture as h = [(.,8)q( 8)d6 + & where the error & can be made
arbitrarily small by properly chogsingg. It is further shown that this second
representation is consistent with the first one, by showing that the ¢.d.f. of g can be made
to converge weakly to the true G. Estimators are proposed for g based on kernel

estimators and linear programming methods.
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1. INTRODUCTION

Let X be a random variable whose observations xe® ( ® denotes ‘the real line) are

distributed according to the mixture density

h(x) =2 AV CH-TD — (1

The components of this mixture, f(. ,8]- ),j=1,2,... N are each members of a given family
of densities, ¥, parameterized according to the real variable 8. The mixing proportions

)\}-e&, j=1.,2,... N are nocnnegative and £ )‘j =1,

Finite mixture distributions have turned out to be a suitable madel for a Targe number
of physical processes. In their recent book, Titterington, Smith, and Makov ( 1985)
mention a nﬁmber of applications of the finite mixture model. Our interest in the model
arose from a problem in remote sensing in which it was required to estimate the
proportion (i.e., a mixing proportion inequation( 1)) of an agricultural area that was
planted to a given crop from satellite derived spectrometer measurements of the area. In

this problem not only were the mixing proportions of equation ( 1) unknown but the other

parameters N, e]- , j=1,2,... N were also unknown.

In the case where N is known, several authors have proposed estimation methods for

determining the remaining parameters. Among these is the class of maximum likelihood




methods which contains the EM algorithm of Dempster, Laird, and Rubin (1977). It is
known (Zacks 1971) that when the modsl is specified, in this case N being given, the
maximum likelihood estimator, under rather weak conditions , is cpnsistent, is
asymptotically unbiased, and is an asymptotically minimum varianée estimator.
However, when N is unknown these properties need not hold. Holding the number of

samples"observations fixed, Redner, Kitagawa, and Coberly ( 1981) point out that the

Tikelihood function evaluated at the maximum likelihood estimate (A4, &5, .. , Ay, 8,

~

0o, ... ,éN) increases as N increases. This behavior has prompted the introduction of

penalized maximum likelihood estimators. Redner, Kitagawa, and Coberly (1981), for
example, applied such a penalized estimator based on the so-called AIC, which was

originally introduced by Akaike (1973, 1977).

If N is believed to be a certain value, say Ng, then one could presumably test the null

hypothesis that N=N(y against some alternative. There have been a number of proposed

statistical tests of this kind. The book by Titterington, Smith, and Makov ( 1958) has a
good summary of this approach.

Our approach for determining N, as well as the other parameters in the mixture, uses
an integral equation representation of the finite mixture. This representation has the

form
h(x) = J 1(x,8)0(8)d0 + 8(X) occoosrrrennnn... (2)
where the error function, &, can be made small (in norm) by an appropiate choice for g.

Given h, the function g can be chosen so that it is a density function having N modes and

high density on small intervals that contain the true parameter values 8y, 82, ... BN
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Moveover, the cumulative distribution related to g will approximate a distribution with

jumps at these 6-parameter values and whose jump sizes areAy, Ao, ... \Ay. Thus, the

determination of N, Aj , ej ,j=1, 2, ... ,N depend anly on the determination of 8 single

function, g. When h is unknown, but can be estimated from the data, then the problem is
to estimate g by methods which tend to preserve the above desired characteristics.

This approach bears some similarity to the one proposed by Medgyessy ( 1977) in
which a test function is derived from the mixture and the graph of the test function is
more infromative about the mixture parameter values than is the mixture itseif. in
particular the graph of the test function should have N narrow peaks that are much more
pronounced than any peaks that may be present in h. The structure of the test function
thus reveals the number of components in the mixture and may reveal other information
concerning the other parameters. in our case g woulid De representative of Medgyessy's
test function.

We will begin our discussion of finite mixtures by first considering the case where the
parameter, 8, is a translation parameter, and then we will consider the more general
situation in which 8 is not necessarily a translation parameter. In both cases certain
convergence results will be presented which will establish the consistency between the
finite mixture and the integral equation representation. We will conclude by proposing
estimators of the g-function and examine some of. the properties of these estimators using

numerical simulations.

2. INTEGRAL EQUATION REPRESENTATION

We can write the finite mixture of equation (1) as

4




h(x) = [1(x,8)d6(8) ....ccooervverrenns (3)

where G is a cumulative distribution function (c.d.f.) that is a step function with its

discontinuities at the points 81, 67, ... .8y and where G(8)=0 for 8<8 andG(8)=1 for
8>8)y. We will assume that f is a continuous function on (-00,00)xA where A is a closed

interval containing the set {8, 87, ... .8y} and that f(.,8) is a density function for any

BeA.
The family 6 of all ¢.d.f.'s G induces, through the kernel f, a family of mixtures K. If

given heX, there exists a unique GeB, then X will be called identifiable ( Teicher 1963).

In this paper we will deal only with identifiable families.

We begin by considering the case where 8 is a translation parameter. In thiscase X is
the family of all mixtures that can be generated from translates of some given density .
Any heX has the form

h(x) = J(x-0)d6(8) ......co......... (4)

Yakowitz and Spragins ( 1963) prove that X is identifiable; however, it is interesting to
note that identifiability for this case can be easily deduced from the Caratheodory
trigonometric moment theorem (Grenander and Szego 1958, pages 56-61). Indeed,

letting h, f denote the Fourier transform of h,f respectively, it follows from equation (4)

that h(w)/f(w) = X Aj exp( imej ) where the summation goes from 1 to N. By the
Caratheodory theorem this is a unique representation for any collection of values Wy,

k=1, 2, ... Nfor which f(wy )=0.

Toobtain the integral equation representation for this case, we convolve h in equation

S




(4) with a density function t concentrated on an interval ( -€,€), €>0, to obtain

(*0(x) = [ 1(x-2gy(2)d2 oo (5)
where
0(2) = S Uz-8)6(8) (6)
Thus
h(x) = J f(x-0)gy(8)d8 + 8(X) oo (7

with8(x) = h{x) - (h*t)(x). Letting {||| denate the supremem norm, and noting that h

is a continuous density,
811 = S sup, | h(x)-h(x-2)| (2) d&z » 0

ase- 0. Also for any ge C(A) (where C(A) is the set of all continuous functions on A) we

have from equation (6),
J a2ay(2)dz = ST J a(2)t(z-6)dz] 66(6) » [ o(6)do( 8)
as€ - 0. This impiies that the c.d.f. G; of g; converges weakly to G.

Since ||8]] » 0 and since Gy - G weakly, we will say that our integral equation

representation, equation ( 7), is consistent with the finite mixture representation given

by equation (4). It follows also that
g(2) = Zx]- Mz-65) (8)
and so g4 1s @ mixture density with the same parameter values as h; but, by choosing t to

be a-unimocal density concentrated at 0, the graph of g; is generally mare revealing than




is the graph of h. In fact h can be unimodal while gy can have N modes at the points 8,

8o, ... O\
In the general case where 8 is not necessarily a translation parameter, we can proceed

in the following way. Consider the functions t(. .ej Yi=1.2,.. Nwhereeach
t(. 6 ) is adensity function concentrated on a small interval that contains the true
parameter value ej in its interior. Define

hN(x)=sz(x,9)t(8,6j)de ..................... (9)

Since h can e written as

h(x) =2 A J‘f(x,e;-) t(6,8;)d6

we have
Hh-hyll = ZP\} J supy 11(x,8) - f(x,ej | X6, )d6
Since f(.,8) is a continuous density function for all €€A, we can make ||h-hyl|
arbitrarly small by forcing each density function t(. ,6]- ) to be increasingly more
concentrated on ej , 1.e., ietting the interval support of t(. ,6]- ) approach zero in size.
Since the parameter values ej =12, N arve not known, we can not choose the

t(. ,6j )-functions directly. Instead, we will consider a sequence of normalized B-spline

functions of order 2, or greater, defined over equally spaced knots that partition the

interval A. Since the support for the splines overiap, any given 6)- will be contained in




the interior of the support for some B-spline function. For such a set of B~splines,
{Bx.k=1,2,.. M} define

hy(x) = 2 oy S 1(x,0)B,(8) dB
By letting M ->0o it is clear, that for this case, we will also have ||h-hym || 20, provided of

course that for each choice of M we pick the a -values properly. in the next section we

will propose & linear programming approach for computing these oy -values
By letting
0M(8) = 2 0 B(8) e (10)

where the summation goes from 1 to M, we have

h(x) = J 1(x,8) av(8) 0B + Epy(X) ..oeccc. (11
where 8y = h-npq. Toestablish that this representation‘, inegquation ( 11), isconsistent

with the one of equation (3), it remains to show that the c.d.f. of the density gy weakly
converges t0 G.
Thearem. Let X be identifiable and let h be defined according to equation (3). For ™M

= 1,2, ... cefine Gp to be the c.c.f. corresponding to gy (where gy is defined according to

equation (i0)). Define hy as
hm(.‘() = J.A f(X.e) QM(G) as
if {{h-npl] = 0 (M » o) then Gy 6 weakly.

Proor. Denote a linear functional on C(A) as L. When £ is associated with some given




c.df., F,denoteitby L(.,F) (ie., L{.,F) = [ .dF). First note that C(A) is separable and

(e.g., from the Riez representation theorm) |[£(.,Gpm)I| = 1 for all M. Thus (Kolmogorov

and Formin 1957, p. 94) the sequence (£(.,Gp)), or any subsequence of that sequence,

contains a weakly convergent subsequence. Thus we can find a subsequence (M') so that
£(9,6¢+) = £(q) for any ge€(A). By the Riez representation theorem £(q) = J qdF and
since L{1.Gp) = 1 for all M', F isac.d.f (Feller 1971, p. 251). Since for any x,
f(x,.)et(A) and £(f(x,.),GpM+) = £(f(x,.),6), by the identifiability of X it must be that F
= (. Tocomplete the proof simply note that the above argument implies that

limsup£(q.6M)) = 1iminf(4(q,6)) = £(q,0).

3. ESTIMATORS OF g

Given the finite mixture representation
h(x) = [ 1(x,0)5(8)d6 + 8(X) oo, (2)
we now turn to the problem of estimatingg frem an iid sample Xy, X0, ... , X, where each
X; is distributed according 1o the mixture density h.

Our primary purpose for estimating g is to obtain an estimate of N in equation (1). As
discussed in the Intreduction, our estimate of N will be based on the number of

“proncuned” peaks in the estimated graph of g. Also, with reference to equation (1), the

location of each peak (the mode) can be taken as an estimate of a 6]- -value; and, the size of

gach jump in the c.d.f. corresponding to the estimated g about a ej ~-value can be taken as an



estimate of the 7\]- -value. All of these estimates are subjective and depent upon a visual

inspection of the density or c.d.f. graph.

A possible approach for estimating g would be to first estimate h, from the given

sample, Xy, Xo, ... , X, and then, cailing h our estimate of h, minimize

| f - f1(.8) g(8) 8 ||, with respect tog. Here ||.|} is some norm, which may not be

the supremum norm considered earlier. Since the family {f(.,8); 6€A} is equicontinuous
and uniformly bounded, the operator induced by the kernel f is compact ( Lusternik and

Sobolev 1961). The inverse operator, if it exists, will therefore be discontinuous. This

means that any numerical solution for g can be very sensitive to small changes in h. In
Tikhonov's regulerization method ( Tikhonov and Arsenin 1977), this discontinuity

problem is addressed by appropiately constraining the solution for g by a linear
combination of the L, norms of g and its derivatives.
Rather than use the general representation of equation ( 2') we will use the specific

representations of equations (7) and ( 11). That is, we will estimate gy for a suitable

choice of t and g for a suitable choice of a spiine series. In the case of gy it is possibe to
avoid the above mentioned discontinuity problem by deriving an operator from f that is

continuous and,upon operating on h, will give g;. 'We now discuss this approach.
Rewriting equation (S) in terms of Fourier transforms gives at a point w

gi(w) = (Hw)/ (W) h(w) .l (12)

Let tg = t/f. Then (assuming t; is integrable)




g (8) = J t(8-x) h(x) dx
Given our above random sample Xy, Xo, ... , X, an (unbiased) estimator for gy is

£(8) = (1/0) 2 t(8-X;) ovccrvrcn 13)

In the next secion we will consider this estimator for the case where f is a gamma
density function i.e. f(x) = ( 1/mly™* 1) xM exp(-x/v) for xZ0 and f(x)=0 for x<O.
For this case equation ( 12) becomes

gy(w) = ((1+iwy)™* 1t(w)) h(w)

{f we choose t so that it has m+ | derivatives and the m derivatives as well as t vanish at

-@2 and o2, then

where the summation is over k from 1 tom+ 1 and where D is the standard derivative
operator (D =d/dx). Motice that the gamma function leads to an inverse operator that is a
linear combination of derivative operators, Dk, k=1,2, ,m+ 1 and is therefore
discontinuous. The role of t, in this case, is to transform this discontinuous cperator toa

continuous one,

For the more general case where © is not necessarily a translation parameter we turn

to the problem of estimating g as given by equation (10). Inthis case we propose to

minimize ||h - [ 1(.,8)9p4(6)d6|] with respect to gy subject to certain constraints on
gp.which we will discuss in a moment. Here [|.]{} is the j horm. Given the iid sample

X1, %1, ..., Xn (where recall each X; is distributed eccording to the mixture h), & is

[




defined as the histogram, on the partition XQX 1< Xy

h(Xj) = nj/n

where nj is the number of observationson X, Xo, ... , Xy fall in (x]_1 ,xj] forj=1,2, ...

,m. Thekernel, f, is also evaluated at these partition points.

This minimization will be expressed as a linear programming problem, viz,
minimize: Ay + Ap + .+Ap
subject to: for j=1,2, ... m,k=1,2,... 1,
-4y R(x;) - J f(x;,8)a(8)d0=A;
A;20, a4 20, Zay=1

The constraints in this case force the resulting estimate of gy, say g, to be a density
function. The solution of the linear programming problem is the ot -values that define
gp, Which we will call a g, @, ... Q-

Since the sequence (gM(8)) does not converge; but, instead the smoothed sequence
(Jal 6)gpm(6)d6) converges for all geC(A), it would appear that we should also observe
some smoothed graph of éM- In particular if (c.f. equation (10))

g(8) = 2, By(8) e (15)

where By, is a B-spline of order r then convolving éM with a B~<pline of order s would

give a series expansion in terms of B-splines of order r+s with the same & -values. This

12




is in fact what was done in the numerical studies discussed in the next section. The
original expansion is in terms of second order B-splines and the smooth version is based

on B-splines of order four.

Notice that this estimation approach is based on an | 1 horm as apposed to the supremum
norm used in the theorem. Since h and hy are unifoermly continuous, and since the
histegram will converge almast surely toh, it is easily seen that given €>0 it is possible
to almost surely dominate {{h-hwmi{ by Wa-f f(.,8)gpm(8)d6l| 4 + € for a fine enough

partition xg<x1<... K.

4. NUMERICAL EXAMPLE
The first set of examples is based on a mixiure of two translated gamma density

functions of the form
h(x) = Z(1/2)((x-8; )/ 2 X exp=(x-8; )/ 7 )(x-8;)
where W(x)=1 for xZ0 and O otherwise and where y=.1. The estimator of g, given in

equation ( 13), was computed for a sample of size 1000 from this mixture. In equation

(113) the function t; was computed according to equation ( 14) taking the function t to be a

fourth order B-spline with knots placed at intervals of length A=.1. The function i

therefore has the fbrm
tf(e) = t4(8) + (2v/A)(t3(6)-t3(6-A))

+ (y2/A2)(15(8)-2t5(B8-A)+to(6-2A))

Cd




where t;, k=2,3,4 are second, third, and fourth order B-splines respectively. The
expressions for these B-splines can be found in Schumaker ( 1981).
Figures 1-3 show the estimated mixture densities and the corresponding ét estimated

densities. n these figures h was estimated using a kernel estimator where the kernel was

a third order B-spiine with knots placed on intervais of length . 1.
in the first fiqure the mixture consists of two components with 8y =2andB, =3. The
spacing appears to be too close to resolve the components of the mixture by these methods

as can be seen from the unimodal form of ét- As the components become more separated,
as shown in Figures 2 and 3 the components show up. In Figure 2 ét displays two modes

even though the estimated h still appears to have no inflections. When 84=.2 and 8=.4,
infigure 3, the separation of the components can be seen in the mixture and is even more
pronounced in the graph of g.

The next et of examples is based on a mixture of two normal densities with different

variances but the came means. In this cace
n(x) = T(1/2)01/(2m0;2) Bexp-(( 1/2)x2/02)
As indicated in the previous section a tinear programming approach was used to estimate
gp. The actual form of this estimator is given in equation ( 15) with M=20.
Figures 4-6 shiow the histograms of hcalculated from 1000 observations on this

mixture withaceli size of .417 inthe range of -510°S. Ineach case 0 2=1; but, 022=2




in Figure 4, 022=2.5 inFigure S, and 022=3 in Figure 6. The coresponding graphs of

éM are also given in the figures. Twenty B-splines were used to compute ém on equally

spaced knots on the interval (.01,5).

The graph of QM, in Figure 4, suggests that two components may be present in the

mixture;but, since the peaks are so disproportionate in size the smaller peak may be an
artifact of noise. Figures S and 6, however, show that components whose variances differ

by 1.5 or more could be distinguished.

Both sets of figures suggest that the graphs of gy or gy reveal the number of

components in the mixture better than the other parameters. When components are not

well separated any distinguishable peaks in the graphs of ét and ém tend to be

disproporticnate in size and therefore any estimate of the mixing preportions that could be
derived by examining the c.d.f. of these functions would be considerably inerror. The
estimates of the location or scale parameters that could be derived by examining the

*

location of the peaks are somewhat better.

S. CONCLUDING REMARKS
We have shown that in certain cases it is possibe 10 approximate a finite mixture as a
continuous mixture, i.e., a mixture in which the‘mixing function is @ continuous density
function. We have further proposed methods for estimating this mixing function; and,
from a few numerical examples have observed the behavor of the estimates. Our purpose
was o develop a graphical approach for determining the number of components in the

mixture and to a lesser extent to determine the nther parameters in the mixture.

15




By approximating a finite mixture with a continuous mixture, one could possible loose
uniqueness in certain cases. [t is well known, for exampie that a finite mixture of
normals in which the means and variances are allowed to vary is an identifiable mixture
(Teicher 1963) cr ( Yakowitz and Spragins 1968). However, the same is not true of a
continuous mixture of normals when both the means and variances vary, as was pointed
out by Teicher ( 1960). The extent ta which these multivariate cases 1imit our approach

needs o be considered.
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